Isolation Gram Positive Bacteria from Deep Carious Lesion Iraq-Baghdad.

Ayashi Ali¹, Mais E. Ahmed²

1,2 Department of Biology /College of Science / University of Baghdad/Iraq Corresponding author email: mais.e.mahmood@gmail.com

Abstract

Streptococcus mutans is one of cariogenic microorganisms associated with tooth decay. The ecological plaque according with the hypothesis and caries is the changes consequence in the natural dental plaque microflora. 100 specimens were according to be positive bacterial isolates by using Mitis-Salivarius agar medium. 98% for total isolates were considered *Streptococcus* and specially *S. mutans* identification depending on biochemical test and Vitech 2 system.

The common species strain according to (eight strains) including *Bacillus* sp., *Staphylococcus sp., Enterococcus. Faaecalis, Streptococcus sp.,* aerobic bacteria and *Lactobacillus fermentum*, Keywords: human dental plaque, streptococci bacteria, teeth caries, periodontal.

1. Introduction

In human Oral cavity supports life for different verity species bacteria permeate into the tissues same time lower host immunity. Loesche [1] different types reach about 700 of species include groups bacteria that found in the mouth, it is important to healthy oral preserving. Growth comprising lactic acid bacteria with mouth gives an environment genera *Lactobacilli*, *Streptococcus*, found in mouth and droplet spray *Entamoeba gingivalis* [2].

A Necessary Factor of Etiology Dental Diseases Bacterial of Infection Both Dental Caries and Periodontal Diseases ,Still affect a Major Portion of the Population [3].

These findings make the control of oral microbes a vital concern because dental plaque biofilm protects pathogenic bacteria from antibiotics. Increasing resistance among pathogens to conventional antibiotics and side effects of current therapie have made plants traditional medicine a potential source to screen for antimicrobial agents Firmino et al. [4] Were formerly Microbes with oraldiseases have been shown ingeneral pathogenic. Almost 50% microflora oral streptococci., but tooth brushing vigorous after Bacteremia may occur dental treatment after in patients with periodontitis Thus, for many species , oral cavity acts as an important pathway into the human body [5].

The development of caries bacteria is considered as the pioneer in, in dentin especially, and have an antagonistic effect against pathogens periodontal. The inhibition of their growth is through the production of acids which lowers the environment's pH release bacteriocins and (H2O2), playing a key role in maintaining the balance of antimicrobials in the mouth and the digestive system Alhamiar et al. [6] Generally Periodontal disease include alveolar ,gingival, bone, and cementum to pathologic state inflammatory of the gingiva and the supporting structures of the periodontium. Epidemiological data in United States, that affects one-half periondontal disease of its population is the important cause of tooth loss among adults [7].

This goal reserch isolation and identification of microorganisms causes teeth decay.

2. Materials and Methods

Samples of Collection

100 samples collected from 100 patient dental carries. who had refrained from eating, drinking and oral hygiene for 2 hours before collection in AL Yarmouk hospital, Baghdad, in strile transport media then transport in cool box to the laboratory.

A/ Isolation procedures

A stained with gram stain by doing smears and to bacteria isolated. By using light microscope [8].

B/ used culture

Spacemen was incubated into both (Blood and Mitis Salivarius); incubated under anaerobic conditions. differentiate between strain by Biochemical reactions [9]. Bacterial Isolates

Samples were streaked on selective Mitis Salivarius Agar to obtain isolated colonies of oral streptococci species. Samples were grown under anaerobic conditions (jar under co_2 at 37°C for 24 hrs). Colonies demonstrating dissimilar colonial morphology with gram positive cocci arranged as chains were chosen in the present work and MRS medium.

For isolation *Lactobacillus* while Esculin Agar for *Enterococcus* **Sp.** Confirmation identification optochin sensitivity and by Vitech 2 system. [10].

3. Results and Discussion

Isolation of Bacterial Isolates

In gram positive the type of bacteria isolated belong to, Table (1) the isolated were the aerobic bacteria eight strains according *Streptococcus* spp, *Enterococcus* spp, *Bacillus* sp., *Staphylococcus sp.*, anaerobic bacteria which include *Lactobacillus fermentum*,

Table 1: Number and type of bacteria isolated from	
teeth caries	
Type of microorganism (Grams	Number of microorganism
positive)	(100%)
Streptococcus mutans	37

Received: 05.03.22, Revised: 22.05.22, Accepted: 22.08.22

Streptococcus salivarius	33
Streptococcus. Sanguis	28
Enterococcus. Faaecalis	25
Staphylococcus aureus	20
Bacillus cereus	16
Staphylococcus epidermidis	17
Lactobacillus fermentum	10

All samples collected were streaked on Mitis Salivarius Agar; a selective medium used to isolate oral streptococci and differential because each species of streptococcus has a distinguished colony morphology. The medium contains selective that bactericidal Gve+ bacilli except streptococci and enterococci. (Potassium tellurite) salt is reduced by Enterococcus Spp. Form black colonies. *S. salivarius* sucrose metabolizes and colonies develops with a "gum-drop" appearance. *S. mitis* and enterococci do not metabolize sucrose and, form smaller colonies on this medium. Colony morphology of Streptococcus species obtained on Mitis salivarius agar, as seen under a microscope (Figure 1) and blood agar

colonies Single on the surface of MS-agar by subculturing and purification on blood agar. Gve + included cocci which are (spherical or ovoid) chains under light microscope

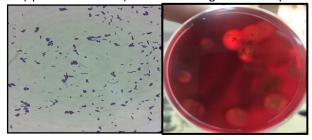


Figure (1) A: Gram staining–S. mutans, B: Blood agar at 37c for 24 hrs

Streptococcus mutans was the highest counts was obtained from carries samples followed by complete denture group (Figure 2). The *S. mutans* levels was very low decreasing by dentulous, removable partial denture and edentulous groups. Levels of *S. sanguis* were similar to that *S. mutans* except for slight predominance in the complete denture group. The result agree with Mohapatra et al. [3].The *Enterococcus* spp was second bacteria predominate dental caries see (Figure 3).

Fig (2): Colony counts of A) S. mutans B) S. sanguis on Mitis Salivarius Agar at 37c anaerobic jar for 24hrs

Fig (3): Colony Enterococcus spp. on Esculin Agar After 24 hr.at 37°C

generally considered and associated with systemic diseases several, ental caries, tooth decay commonly known as, oral health problem is the most common and *S. mutans* is considered to be the primary agents of dental caries [11, 12].

Identified depending of isolates on the surface of MS-agar media. colonies raised that were identified as *S. mutans* which was considered as one of the important agent of etiological dental caries [13] by Asokan et al. [14]

Result disagree with Mohapatra et al. [3] showen patients about reached 30 cases have *s. mutans* and another *Staphylococcus* spp, that main higher than *s. mutans* .

A positive bacteria reached (10⁴ cells/ml) colonies on MS-agar were selected by sub culturing [12].

An imbalance between demineralisation and remineralization dental caries occurs because (demineralization) is higher than (remineralisation), caries can occur [15].

Referrnce

1. Loesche W. Dental caries and periodontitis: contrasting two infections that have medical implications. Infectious disease clinics of North America. 2007;21(2):471-502.

https://doi.org/10.1016/j.idc.2007.03.006

- 2. Onyido A, Amadi E, Olofin I, Onwumma A, Okoh I, Chikwendu C. Prevalence of Entamoeba gingivalis and Trichomonas tenax among dental patients attending Federal School of Dental Technology and Therapy clinic, Enugu, Nigeria. Oral diseases. 2011;9(9):59-62.
- 3. Mohapatra S, Pattnaik M, Ray P. Microbial association of dental caries. Asian J Exp Biol Sci. 2012;3(2):360-7.
- 4. Firmino DF, Cavalcante TT, Gomes GA, Firmino N, Rosa LD, de Carvalho MG, Catunda Jr FE. Antibacterial and antibiofilm activities of Cinnamomum sp. essential oil and cinnamaldehyde: antimicrobial activities. The Scientific World Journal. 2018;2018.

https://doi.org/10.1155/2018/7405736

- 5. Patricia A, Fernando A, Gagliardi M. Prevalence of Streptococcus of saliva of children and adolescents. Braz J Oral Sci. 2003;2(4):164-8.
- 6. Al-hamiar AK, Kezar MY, Al-Khafaji YA. Prevalence of Oral Protozoa in Periodontitis and Gingivitis Patients Whose Attended to Clinics Periodontics, Dentistry College\Babylon Univ. Al-Kufa University Journal for Biology. 2011;3(1). Available from: https://journal.uokufa.edu.iq/index.php/ajb/article/view/9352
- 7. Mehta A. Risk factors associated with

periodontal diseases and their clinical considerations. Int J Contemp Dent Med Rev. 2015;2015:1-5. Available from: http://ijcdmr.com/index.php/ijcdmr/article/view/74

- 8. Nigeria A. Prevalence of Entamoeba gingivalis and Trichomonas tenax among dental patients attending Federal School of Dental Technology and Therapy clinic, Enugu, Nigeria. 2011;9(9):59-62. Available from: https://www.researchgate.net/profile/Oluchi-Olofin-2/publication/270646006
- 9. Wormser GP, Hanna BA. Manual of Clinical Microbiology, 8th Edition. Edited by Patrick R. Murray, Ellen Jo Baron, James H. Jorgensen, Michael A. Pfaller, and Robert H. Yolken Washington, D.C.: American Society for Microbiology Press, 2003. 2322 pp. \$189.95 (cloth). Clinical Infectious Diseases. 2004;38(8):1199-200. https://doi.org/10.1086/383067
- 10. Gold OG, Jordan H, Van Houte J. A selective medium for Streptococcus mutans. Archives of Oral biology. 1973;18(11):1357-64. https://doi.org/10.1016/0003-9969(73)90109-X
- 11. Cheon K, Moser S, Whiddon J, Osgood R, Momeni S, Ruby J, Cutter G, Allison D, Childers N. Genetic diversity of plaque mutans streptococci with rep-PCR. Journal of dental research. 2011;90(3):331-5. https://doi.org/10.1177/0022034510386375
- 12. Friedrich J. The genus Streptococcus and dental disease. Procaryotes Hand Book of Habitats, Isolation and Identification of Bacteria Berlin, New York: Springer International Publishing AG. 1981:1598-613.
- 13. Loesche WJ. Role of Streptococcus mutans in human dental decay. Microbiological reviews. 1986;50(4):353-80. Available from: https://journals.asm.org/doi/pdf/10.1128/mr.50.4.353-380.1986
- 14. Asokan S, Rathan J, Muthu M, Rathna PV, Emmadi P. Effect of oil pulling on Streptococcus mutans count in plaque and saliva using Dentocult SM Strip mutans test: A randomized, controlled, triple-blind study. Journal of Indian Society of Pedodontics and Preventive Dentistry. 2008;26(1):12. Available from: https://www.jisppd.com/article.asp?aulast=Asokan;epage=17;issn=0970-

4388;issue=1;spage=12;volume=26;year=2008

15. Poulsen S, Koch G, Espelid I, Haubek D. Pediatric dentistry: a clinical approach. Munksgaard, 2001. Available from: https://doctorlib.info/pediatric/pediatric-dentistry-clinical-approach/1.html